北京师范大学化学学院
     
 

发布时间: 2023-03-04  浏览次数:

照片.jpg张洋
副教授博士生导师理学博士(德国莱布尼茨固体材料研究所)

通信地址:北京市新街口外大街19北京师范大学化学学院,100875

电子邮箱:y.zhang@bnu.edu.cn


研究领域及兴趣

碳纳米材料合成与光电器件;纳米药物载体;纳米能源与催化材料 

招生信息

每年招收具有碳纳米材料合成、光电器件等背景的博士生1名,硕士生12

欢迎热爱科研的本科同学、有意向保研和考研同学联系 

讲授课程

电化学;现代化学实验方法与技术;化学基础实验I 

科研项目

国家自然科学基金:面上项目、青年项目 

代表性论文:

碳纳米材料与光电器件、纳米药物载体:

1. Yuan, T.; Zhao, G.; Tang, D.; Song, X.; Du, J.; Yu, Z.; Zhang, Y.*; Sui, L.; Li, X.; Li, Y.; Shen, L.*; Yuan, F.*; Jiang, W.*; and Fan, L.*, Symmetric Boron-Bridged Carbon Quantum Frameworks for Light-Emitting Diodes with over 20% External Quantum Efficiency, J. Am. Chem. Soc., 2025, 147, 31, 28504.

2. Han, Y.; Song, X.; Wei, S.; Qing, Y.; Yuan, T.; Shi, Y.; Li, X.; Li, Y.; Tan, Z.*; Fan, L.* and Zhang, Y.*, Deep‐Blue Electroluminescent Light‐Emitting Diodes with Efficient Hot‐Exciton Emission from Carbon Quantum Gear Rack, Adv. Mater., 2025, e10604.

3. Xie, W.; Wang, H.; Xu, H.; Su, W.; Yuan, T.; Chang, J.; Bai, Y.; Fan, Y.; Zhang, Y.*; Li, Y., Li, X. and Fan, L.*, Sterically chained amino acid-rich watersoluble carbon quantum dots as a robust tumor-targeted drug delivery platform, Nat. Commun., 2025, 16, 2716.

4. Shi, Y.; Wang, J.; Song, X.; Wei, S.; Yuan, T.; Li, Y.; Li, X.; Y Zhang, Y.*; Fan, L.* and Hou, J.*, Six-angle polarized snowflake-like carbon quantum dots via electrostatic reversion for low-cost and high-efficiency solar cells, Joule, 2025, 9, 102013.

5. Shi, Y.; Zhang, Y.*; Wang, Z.; Yuan, T.; Meng, T.; Li, Y.; Li, X.; Yuan, F.*; Tan, Z.*; Fan, L.*; Onion-like multicolor thermally activated delayed fluorescent carbon quantum dots for efficient electroluminescent light-emitting diodes, Nat. Commun., 2024, 15, 3043.

6. Yuan, T.; Yuan, F.; Yuan, T.; Li, X.; Li, Y.; Zhang, Y.*; Fan, L.*, Carbon Quantum Dots with Near-Unity Quantum Yield Bandgap Emission for Electroluminescent Light-Emitting Diodes. Angew. Chem. Int. Ed., 2023, 62, e202218568. (More than 100 citations)

7. Meng, T.; Wang, Z.; Sui, L.; Zhang, Y.*; Li, Y.; Li, X.; Tan, Z.*; Fan, L.*, Gram-Scale Synthesis of Highly Efficient Rare-Earth-Element-Free Red/Green/Blue Solid-State Bandgap Fluorescent Carbon Quantum Rings for White Light-Emitting Diodes. Angew. Chem. Int. Ed., 2021, 60, 16343. (More than 100 citations)

8. Shi, Y.; Gong, Y.; Zhang, Y.*; Li, Y.; Li, X.; Tan, Z.*; Fan, L.*, Axially Growing Carbon Quantum Ribbon with 2D Stacking Control for High-Stability Solar Cell, Adv. Sci., 2024, 11, 2400817.

9. Wei, S.; Ma, P.; Song, X.; Yuan, T.; Yang, L.; Shi, Y.; Fan, R.; Fan, L.*; Li, X.; Li, Y.; Tan, Z.*; Zhang, Y.*, High-brightness electroluminescent white light-emitting diodes based on solution-processable, yellow-emissive carbon quantum dots, J. Mater. Chem. C, 2025, 13, 16151.

10. Yuan, T.; Song, X.; Shi, Y.; Wei, S.; Han, Y.; Yang, L.; Zhang, Y.*; Li, X.; Li, Y.; Shen, L.; Fan, L.*, Perspectives on development of optoelectronic materials in artificial intelligence age, Chem Asian J., 2024, 19, e202301088.

11. Xu, H.; Chang, J.; Wu, H.; Wang, H.; Xie, W.; Li, Y.; Li, X.; Zhang, Y.*; Fan, L.*, Carbon Dots with Guanidinium and Amino Acid Functional Groups for Targeted Small Interfering RNA Delivery toward Tumor Gene Therapy, Small, 2023, 19, 2207204.

12. Yuan, T., Meng, T.; Shi, Y. X.; Song, X. Z.; Xie, W. J.; Li, Y. C.; Li, X. H.; Zhang, Y.*; Fan, L.*, Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays, J. Mater. Chem. C, 2022, 10, 2333.

13. Shi, Y.; Xu, H.; Yuan, T.; Meng, T.; Wu, H.; Chang, J.; Wang, H.; Song, X.; Li, Y.; Li, X.; Zhang, Y.*; Xie, W.*; Fan, L.*, Carbon dots: An innovative luminescent nanomaterial, Aggregate, 2021, 3, e108.

14. Su, W.; Wu, H.; Xu, H.; Zhang, Y.*; Li, Y.; Li, X.; Fan, L.*, Carbon Dots: A Booming Material for Biomedical Applications. Mater. Chem. Front., 2020, 4, 821. (More than 200 citations)

15. Su, W.; Guo, R.; Yuan, F.; Li, Y.; Li, X.; Zhang, Y.*; Zhou, S.*; Fan, L.*, Red-Emissive Carbon Quantum Dots for Nuclear Drug Delivery in Cancer Stem Cells. J. Phys. Chem. Lett., 2020, 11, 1357 (More than 100 citations)

纳米能源与光电催化:

1. Interface Engineering on p-CuI/n-ZnO Heterojunction for Enhancing Piezoelectric and Piezo-Phototronic Performance. Nano Energy, 2016, 26, 417. (More than 100 citations)

2. Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. ACS Appl. Mater. Interfaces, 2016, 8, 1381. (More than 100 citations)

3. Piezo-Phototronic Matrix via a Nanowire Array. Small, 2017, 13, 1702377.

4. Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a Combination of Chemical Doping and Interfacial Modification, J. Phys. Chem. C, 2016, 120, 6971.

5. Photocatalytic fuel cell for simultaneous antibiotic wastewater treatment and electricity production by anatase TiO2 nanoparticles anchored on Ni foam, Chin. Chem. Lett., 2023, 34, 107417.

6. In situ facile fabrication of ultrathin Co(OH)2-CoO/graphene oxide nanosheet hybrids with superior oxygen evolution reaction performance, J. Alloys Compd., 2023, 948, 169780.

7. Vertically Aligned NiS2/CoS2/MoS2 Nanosheet Array as an Efficient and Low-cost Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Media. Sci. Bull., 2020, 65, 359.

8. Synergistic Tuning of Oxygen Vacancies and d-band Centers of Ultrathin Cobaltous Dihydroxycarbonate Nanowires for Enhanced Electrocatalytic Oxygen Evolution. Nanoscale, 2020, 12, 11735.

9. Layered Assembly of Silver Nanocubes/Polyelectrolyte/Gold Film as an Efficient Substrate for Surface Enhanced Raman Scattering. ACS Appl. Nano Mater., 2020, 3, 1934.

10. Highly Ordered Hierarchical Pt and PtNi Nanowire Arrays for Enhanced Electrocatalytic Activity toward Methanol Oxidation. ACS Appl. Mater. Interfaces, 2018, 10, 9444.

富勒烯纳米材料 (2006 - 2014)

1. Synthesis and Structure of LaSc2N@Cs(hept)-C80 with One Heptagon and Thirteen Pentagons. Angew. Chem. Int. Ed., 2015, 54, 495.

2. Magnetic Anisotropy of Endohedral Lanthanide Ions: Paramagnetic NMR Study of MSc2N@C80-Ih with M Running Through the Whole 4f Row. Chem. Sci., 2015, 6, 2328.

3. Transition-Metal and Rare-Earth-Metal Redox Couples inside Carbon Cages: Fullerenes Acting as Innocent Ligands, Organometallics, 2014, 33, 4537.

4. Endohedral metal or a fullerene cage based oxidation? Redox duality of nitride clusterfullerenes Ce=M3-xN@C78-88 (x= 1, 2; M = Sc and Y) dictated by the encaged metals and the carbon cage size Nanoscale, 2014, 6, 1038.

5. Cluster-size dependent internal dynamics and magnetic anisotropy of Ho ions in HoM2N@C80 and Ho2MN@C80 families (M= Sc, Lu, Y), Nanoscale, 2014, 6, 11431.

6. Strain-Driven Endohedral Redox Couple CeIV/CeIII in Nitride Clusterfullerenes CeM2N@C80 (M = Sc, Y, Lu), J. Phys. Chem. Lett., 2013, 4, 2404.

7. Synthesis, Isolation, and Spectroscopic Characterization of Holmium-Based Mixed-Metal Nitride Clusterfullerenes: HoxSc3-xN@C80 (x=1, 2), Chem. Eur. J., 2012, 18, 9691.

8. Single-Crystalline C60 Nanostructures by Sonophysical Preparation: Tuning Hollow Nanobowls as Catalyst Supports for Methanol Oxidation, Chem. Eur. J., 2011, 17, 4921.

9. Template-free Solution Growth of Highly Regular, Crystal Orientation-Ordered C60 Nanorod Bundles, J. Mater. Chem., 2010, 20, 953.

论文引用统计数据来自Google ScholarWeb of Science


 
版权所有:北京师范大学化学学院 通信地址:北京海淀区新街口外大街19号 邮政编码:100875 您是本站第 位访问者